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Abstract 
 

Purpose - In this paper a study of the flow and heat transfer of an incompressible 

homogeneous second grade fluid past a stretching sheet channel is presented and the 

Homotopy Analysis Method (HAM) is employed to compute an approximation to the solution 

of the system of nonlinear differential equations governing on the problem. It has been 

attempted to show the capabilities and wide-range applications of the Homotopy Analysis 

Method in comparison with the numerical method in solving this problems. The obtained 

solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear 

conclusion can be drawn from the numerical method results that the HAM provides highly 

accurate solutions for nonlinear differential equations. 

Design/methodology/approach - In this paper a study of the flow and heat transfer of an 

incompressible homogeneous second grade fluid past a stretching sheet channel is presented 

and the Homotopy Analysis Method (HAM) is employed to compute an approximation to the 

solution of the system of nonlinear differential equations governing on the problem. It has 

been attempted to show the capabilities and wide-range applications of the Homotopy 

Analysis Method in comparison with the numerical method in solving this problems. The 

obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. 

Findings - In this paper a study of the flow and heat transfer of an incompressible 

homogeneous second grade fluid past a stretching sheet channel is presented and the 

Homotopy Analysis Method (HAM) is employed to compute an approximation to the solution 

of the system of nonlinear differential equations governing on the problem. It has been 

attempted to show the capabilities and wide-range applications of the Homotopy Analysis 

Method in comparison with the numerical method in solving this problems. The obtained 

solutions, in comparison with the exact solutions admit a remarkable accuracy. 

Originality/value - In this paper a study of the flow and heat transfer of an incompressible 

homogeneous second grade fluid past a stretching sheet channel is presented and the 

Homotopy Analysis Method (HAM) is employed to compute an approximation to the solution 

of the system of nonlinear differential equations governing on the problem. It has been 

attempted to show the capabilities and wide-range applications of the Homotopy Analysis 

Method in comparison with the numerical method in solving this problems. The obtained 

solutions, in comparison with the exact solutions admit a remarkable accuracy. 
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1. Introduction 
The study of the flow field due to a stretching sheet in an ambient fluid is important in 

several practical engineering applications. Extrusion processes, fibers spinning, hot rolling, 

manufacturing of plastic and rubber sheet, continuous casting and glass blowing are examples 

of industrial applications of stretching of a surface in an ambient fluid. Since the pioneering 

work of Sakiadis [1], various aspects of the problem have been investigated by many authors. 

Good lists of references on this problem can be found in Sadeghy and Sharifi [2], and Hayat 

et al. [3-5]. Crane [6] and Gupta and Gupta [7] have analysed the stretching problem with 

constant surface temperature (CST) while Soundalgekar [8] investigated the Stokes problem 

for a viscoelastic fluid. This flow was examined by Siddappa and Khapate [9] for a special 

class of non-Newtonian fluids known as second-order fluids which are viscoelastic in nature. 

Danberg and Fansler [10] studied the solution for the boundary layer flow past a wall that is 

stretched with a speed proportional to the distance along the wall. These scientific problems 

and phenomena are modeled by ordinary or partial differential equations. In most cases, these 

problems do not admit analytical solution, so these equations should be solved using special 

techniques. In recent years, much attention has been devoted to the newly developed methods 

to construct an analytic solution of equation; such methods include the Adomian 

decomposition method [11], Artificial Parameter Lindstedt–Poincaré [12], Multiple Scale 

[13], Newton–harmonic balancing [14], differential transformation [15] and Perturbation 

techniques [16].   

Perturbation techniques are too strongly dependent upon the so-called ‘‘small parameters’’ 

[16]. Thus, it is worthwhile developing some new analytic techniques independent upon small 

parameters. Homotopy Analysis Method (HAM), which was expected by Liao [17–22], has 

been applied to solve many types of nonlinear problems successfully [23-35]. In this Letter, 

the basic idea of the HAM is introduced and then the equations of flow and heat transfer of a 

viscoelastic fluid over a stretching sheet are solved through HAM. The results are compared 

with the exact solution of this problem which is examined by Rafael [36]. 

 

 

 

Nomenclature 

 

 

2. Formulation of the problem 
2.1.  Flow analysis 

We consider the flow of an incompressible second grade fluid past a flat sheet coinciding with 

the plane 0=y , the flow being confined to 0>y . Two equal and opposite forces are applied  

A  area s   Wall temperature parameter 

pc  Specific heat  ∞T  Ambient temperature 

Ec   Eckert number u  Velocity component in x-direction 

h  Auxiliary parameter v  Velocity component in y-direction 

HAM Homotopy Analysis Method Greek symbols 

k  Viscoelastic parameter 
1α  Thermal viscosity 

L  Linear operator of HAM ρ   Density of  the fluid 

N  Non-linear operator σ   Prandtl 

µ   Viscosity of convective fluid 
 NM Numerical solution 

υ  Kinematic viscosity 

 p Embedding parameter   



along the x-axis so that the wall is stretched keeping the origin fixed. The steady two-

dimensional boundary layer equations for this fluid, in the usual notation, are [36] 
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where u and v are the velocity components in x and y directions, respectively, υ  is the 

kinematic viscosity and ρ  is the density. The boundary conditions to the problem are 
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The second condition (4) is the augmented condition since the flow is in an unbounded 

domain, which has been discussed by Garg and Rajagopal [37].  

Defining new variables 

),()(),( 2
1

ηυη fcvfcxu −=′= (5) 

where 

,
2

1

y
c







=
υ

η (6) 

and substituting in (2) gives 
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where 
ρν
α c

k 1=   is the viscoelastic parameter and a prime denotes differentiation with 

respect to η . The boundary conditions (3) and (4) become 

,01,0 ==′= ηatff (8) 

.0,0 ∞→→′′→′ ηatff (9) 

 

2.2. Heat transfer analysis 

By using boundary layer approximations, the equation of energy with viscous dissipation for 

temperature T  is given by 

,

2

2

2










∂
∂

+
∂

∂
=

∂
∂

+
∂
∂

y

u

cy

T

y

T
v

x

T
u

p

υ
α  (10) 

where α  is the thermal diffusivity and pc is the specific heat of a fluid at constant pressure 

and we have assumed that the radiation is negligible. 

The boundary conditions are 
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where s  is the wall temperature parameter. 

Defining the non-dimensional temperature )(ηθ and the Prandtl number σ  as 
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Using Eqs. (5), (6) and (12), and Eq. (10) and conditions (11) can be written as 

.)( 22 sxfEcfsf −′′−=′−′+′′ σθσθσθ (13) 
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with pcAcEc
2= . 



If 2=s , we find from (13) 

.)(2 2fEcff ′′−=′−′+′′ σθσθσθ (15) 

It is clear from Eq. (15) that all solutions are then of the similar type. When the effect of 

dissipative heat is neglected, we obtain from (15) the simpler equation 

.02 =′−′+′′ θσθσθ ff (16) 

On the other hand, for negligible dissipation, we find from Eq. (13) 

.0=′−′+′′ θσθσθ fsf (17) 

where s  is now arbitrary.  

 

 

3. HAM solutions 
In order to obtain HAM solutions of Eqs. (7) and (16) we choose the following initial guesses 

and auxiliary linear operator: 

),exp()(),exp(1)( 00 ηηθηη −=−−=f  (18) 
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where )51( −=ici  are constants Let [ ]1,0∈P denotes the embedding parameter 

and 21,hh  indicate none –zero auxiliary parameters. We then construct the following 

problems: 

 

Zeroth –order deformation problems 
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For 0=p  and 1=p we have 
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When p increases from 0 to 1 then );( pf η and );( pηθ vary from )(0 ηf and )(0 ηθ to 

)(ηf and )(ηθ . Due to Taylor series with respect to p, we have 
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In which 1h  and 2h  are chosen in such a way that these two series are convergent at 1=p , 

therefore we have through Eqs. (29, 30) that 
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mth –order deformation problems 
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We have found the answer by maple analytic solution device. For first deformation of the 

coupled solution are presented below. 
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The solutions )(2 ηf  and )(2 ηθ  were too long to be mentioned here, therefore, they are 

shown graphically. But it is necessary to remind that both auxiliary parameters of 1h and 

2h appear in other terms of )(ηθ . 

 

 

4. Convergence of the HAM solution 

As pointed out by Liao, the convergence and rate of approximation for the HAM solution 

strongly depends on the values of auxiliary parameters 1h and 2h . For this purpose, the h -

curves are plotted for f  andθ . According to Fig. 1 the ranges for values of 1h is 

1.02 1 −<<− h . Our calculations depict that the series of the velocity field in Eq. (31) 

converges in the whole region of η  for 11 −=h . It is obvious from Fig. 2 that the range for 

the admissible value for 2h  is 75.025.1 2 −<<− h . The series of heat flux in Eq. (31) 

converges in the whole region of η  when 12 −=h . 
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Fig. 1. The 1h - validity for 8
th
-order of approximation 

 

 

2h            

Fig. 2. The 2h - validity for 8
th
-order of approximation 

 

5. Results and discussion 
Now we discuss the variation of horizontal and vertical velocity components with distance 

from the surface at 11 −=h  for 8th order of approximations for different values of elastic 

parameter k . 

Fig. 3 shows the variation of horizontal velocity component )(ηf ′ with distance from the 

surface η  for several values of the elastic parameter k . It can be seen that the velocity 

increases with an increase in elasticity k  of the fluid. Fig. 4 shows the variation of vertical 

component of velocity )(ηf with distance η  from surface. It is found that when the value of 

k  increases then the vertical velocity at a point increases. 

Graphs are also plotted for the temperature distribution )(ηθ  for 8th order of 

approximations. The temperature profiles )(ηθ  in the absence of heat dissipation are plotted 

againstη . 

 



 
Fig. 3. horizontal velocity profiles for several values of k with 1=σ  

 

 

 
Fig. 4. vertical velocity profiles for several values of k with 1=σ  

 

Fig. 5 shows the variation of several values of σ  at a fixed value of elasticity, 01.0=k . It is 

observed that for a fixed value of k , temperature at a point decreases by increasing the Prandtl 

number, σ . The same trend can be seen for 05.0=k  and 09.0=k in Fig. 6 and Fig. 7 

respectively. 



 
Fig. 5. temperature profiles for several values ofσ  with 01.0=k  

 

 
Fig. 6. temperature profiles for several values ofσ  with 05.0=k  

 

 
Fig. 7. temperature profiles for several values ofσ  with 09.0=k  



 

It is observed that from Fig. 8 that for a fixed σ , temperature at a point decreases by 

increasing the elastic parameter k . 

 

 
Fig. 8. temperature profiles for several values of k with 1=σ  

 

Tables 1 and 2 are prepared for HAM results. These results are obtained for different values 

of k . For comparison the results obtained by HAM are compared by numerical solution by 

Cortell [36]. 

 

 

 

 

 

Table 1. The results of HAM and Numerical methods (NM) for )(ηf  and )(ηf ′ . 

NMf ′ 
HAMf ′ NMf 

HAMf η   

1 1 0 0 0 01.0=k  

0.905287 0.905287 0.0951858 0.0951858 0.1  

0.819544 0.819544 0.1813562 0.1813562 0.2  

0.608038 0.608037 0.3939174 0.3939173 0.5  

0.36971 0.369709 0.6334339 0.6334338 1  

0.136685 0.136685 0.8676206 0.86762 2  

0.006907 0.006905 0.9980459 0.9980414 5  
51077.4 −×  5105.4 −×  1.0049396 1.004924 10  

      

1 1 0 0 0 05.0=k  

0.907021 0.907021 0.095275 0.095275 0.1  

0.822686 0.822686 0.181692 0.181692 0.2  

0.395651 0.395652 0.613883 0.613884 0.5  

0.638535 0.638536 0.376851 0.376853 1  

0.879166 0.87917 0.142015 0.142018 2  

1.016882 1.016907 0.007591 0.007601 5  
51078.5 −×  5105.4 −×  1.024636 1.024551 10  

      

1 1 0 0 0 09.0=k  

0.908662 0.908661 0.09536 0.09536 0.1  

0.825666 0.825665 0.18201 0.18201 0.2  

0.619456 0.619455 0.397299 0.397299 0.5  

0.383726 0.383723 0.643409 0.643407 1  

0.142018 0.142015 0.87917 0.879166 2  



0.00832 0.008299 1.035345 1.035297 5  
5109.6 −×  51054.4 −×  1.043958 1.043794 10  

 

 

Table 2. The results of HAM and Numerical methods (NM) for )(ηθ  and )(ηθ ′  with 1=σ . 

NMθ ′− 
HAMθ ′− NMθ 

HAMθ η   

1.334735 1.334725 1 1 0 01.0=k  

1.150410 1.150399 0.875997 0.875997 0.1  

0.993973 0.993962 0.768990 0.768992 0.2  

0.650461 0.650449 0.526390 0.526393 0.5  

0.335684 0.335672 0.289520 0.289529 1  

0.102150 0.10214 0.095600 0.095617 2  

0.004444 0.004441 0.004381 0.00442 5  
5109.2 −×  5109.2 −×  6102 −×  51054.4 −×  10  

      

1.340102 1.34009 1 1 0 05.0=k  

1.155634 1.15562 0.875465 0.875466 0.1  

0.998838 0.99883 0.767953 0.767954 0.2  

0.653708 0.6537 0.524125 0.524128 0.5  

0.336430 0.33642 0.286300 0.286306 1  

0.101015 0.10101 0.092862 0.092879 2  

0.004146 0.00414 0.004013 0.004049 5  
5105.2 −×  5105.2 −×  5102.4 −×  51054.4 −×  10  

      

1.345162 1.34515 1 1 0 09.0=k  

1.160560 1.16055 0.874964 0.874964 0.1  

1.003424 1.00342 0.766975 0.766975 0.2  

0.656761 0.65675 0.521991 0.521993 0.5  

0.337108 0.33709 0.283272 0.283277 1  

0.099930 0.099921 0.090314 0.090328 2  

0.003876 0.003871 0.003683 0.003719 5  
5101.2 −×  5101.2 −×  5109.3 −×  51054.4 −×  10  

 
6. Conclusion: 

Explicit analytical solutions for the velocity field and rate of heat transfer are obtained for the 

viscoelastic fluid over a stretching sheet by using the Homotopy Analysis Method. This 

method provides highly accurate analytical solutions for nonlinear problems in comparison 

with other methods. The auxiliary parameter h  provides us with a convenient way to adjust 

and control the convergence and its rate for the solutions series. These results are found to be 

in good agreement with numerical solutions obtained by [36]. 
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